Bone Marrow Stromal Cells
نویسنده
چکیده
Accepted, April 23, 2003. OBJECTIVE: We investigated the effect of human bone marrow stromal cells (hMSCs) administered intravenously on functional outcome after traumatic brain injury in adult rats. METHODS: hMSCs were harvested from three human donors. A controlled cortical impact was delivered to 27 adult male rats to induce traumatic brain injury, and 24 hours after injury, hMSCs were injected into the tail veins of the rats (n 18). These rats were divided into two groups: Group 1 was administered 1 10 hMSCs, and Group 2 was administered 2 10 hMSCs. Group 3 (control) rats received saline intravenously. Neurological function was evaluated according to the rotarod test and modified neurological severity score. All rats were killed 1 month after injury, and immunohistochemical staining was performed on the brain sections to identify donor hMSCs. To study the phenotypic differentiation of hMSCs, coronal brain sections were stained for neuronal (Tuj1) and astrocytic (glial fibrillary acidic protein) markers. RESULTS: Treatment with 2 10 hMSCs significantly improved the rats’ functional outcomes (P 0.05). The transplanted cells successfully migrated into injured brain and were preferentially localized around the injury site. Some of the donor cells also expressed the neuronal and astrocytic markers. CONCLUSION: These data suggest that hMSCs may be a potential therapy for patients who have sustained traumatic brain injuries.
منابع مشابه
Bone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملLow-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...
متن کاملInduction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملCFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells
The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملA Study on Transdifferentiation of Bone Marrow Stromal Cells into Neuronal and Glial-Like Cells In Vitro by Different Inducers
Introduction: There are some evidences to suggest that bone marrow stromal cells (BMSCs) not only differentiate into mesodermal cells, but also adopt the fate of endodermal and ectodermal cell types. BMSCs can be a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system. Bone marrow stromal cells can be expanded rapidly in vitro and can...
متن کامل